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ABSTRACT: Contributions from quantum mechanical tunneling to the rates of several
radical coupling reactions between carbon sp2 centers used as key steps in natural product
total syntheses were computed using density functional theory. Contributions ranging from
∼15−52% from tunneling were predicted at room temperature, thereby indicating that
tunneling plays an important role in the rates of these reactions and should perhaps be
considered when designing complex synthetic schemes.

How can heavy atom quantum mechanical tunneling1

facilitate the total synthesis of complex natural products?
Other “physical organic chemistry concepts,” such as kinetic
isotope effects (KIEs), have been put to good use in total
syntheses�suppressing the formation of unwanted side
products, for example3,4�but quantum chemical tunnel-
ing1,2,5−8 has not, to our knowledge, been intentionally
employed as a tool in designing a total synthesis.2 Here, we
describe two cases where heavy atom tunneling1 was
responsible for a large portion of the rate of a key reaction
in a total synthesis.9 We hope that this revelation will inspire
others to add this additional tool to their synthetic toolboxes.
While tunneling frequently can be a significant contributor

to the rates of reactions involving H-transfer, even at
noncryogenic temperatures,5 tunneling for reactions not
involving H-transfer�so-called “heavy atom tunneling”�is
less common.1 Classic examples of heavy-atom tunneling
where C−C bond formation/breakage is involved include
cyclobutadiene automerization,10 Cope rearrangement of
semibullvalene,11 and ring-opening of cyclopropylcarbinyl
radical (Scheme 1).12 For tunneling to make a large

contribution to the rate of such reactions (it always contributes
a little when a thermally excited reactant nears the top of a
barrier7), the barrier for reaction should be “thin,” i.e., the
structures of the reactant and product should be similar.5−8

The thinner the barrier, the more of the tail of the reactant
wave function that reaches the product.
In the context of a synthesis of (+)-7,20-diisocyanoadociane,

the ring-closing reaction shown in Scheme 2 (top, 1b → 2b)
was carried out as a key step.9 Given the proximity of the
methylene groups that couple in this reaction, we postulated
that the barrier for ring closure would be thin, and heavy atom
tunneling might make a sizable contribution to the reaction
rate, even at room temperature. Here, we put this hypothesis to
the test using quantum chemical computations. We also
examined another related reaction from the synthesis of
(−)-peyssonnoside (Scheme 2, bottom, 3 → 4)13 to begin to
probe the generality of heavy atom tunneling in synthetically
useful reactions involving radical ring closure between proximal
sp2 carbons.
First, we set out to examine the 1b → 2b reaction. To

simplify our computations, we calculated 1a → 2a, a C2-
symmetric reactant forming a C2-symmetric product. This
exact molecule was also synthesized and shown to cyclize with
a similar yield as the dimethyl compound 1b (85% vs 92%)
under the same reaction conditions (Scheme 2, top).14
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Scheme 1. Representative Reactions Involving Heavy Atom
Tunneling and C−C Bond Formation/Breakage
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The most energetically favorable conformations for each
structure were first determined using the xTB-CREST
conformational searching package.15 Computations on species
along the cyclization reaction coordinate were then performed
at the UM06-2X/6-31G(d,p) level of theory (gas phase),
which is well known to provide reasonable accuracy for
systems composed of main group elements, using the
Gaussian16 C.01 package.16−19 Optimized geometries are
available at the ioChem-BD repository via DOI: 10.19061/
iochem-bd-6-347.19b The 1a → 2a reaction was also
benchmarked using other functionals, including B3LYP-
D3(BJ), mPW1PW91, ωB97XD, and PBE0-D3(BJ) (see the
Supporting Information).20−23 A standard mechanism for
photoredox activation was assumed24 in which the radical
shown in Scheme 3 (generated via proton transfer and electron

donation to reactant 1a) is the species that undergoes
cyclization. A free energy barrier of 18 kcal/mol was computed
for this reaction. The associated computed intrinsic reaction
coordinate (IRC)25 is shown in Figure 1.
To determine the contribution of tunneling to the rate of

this reaction, Truhlar’s reaction path variational transition state
theory was employed using Gaussrate/Polyrate.27−29 Two
types of transmission constants were used to arrive at
predictions with zero-curvature tunneling (ZCT) and small-
curvature tunneling (SCT). So-called k factors, which are
related to transmission coefficients (here, tunneling correc-
tions), were calculated as the ratio of the Boltzmann average of
the quantum transmission probability to the Boltzmann
average of the classical transmission probability (with a
threshold energy at the maximum of the ground-state energy
along the reaction). Results, including percentages of the

reaction rate predicted to arise from tunneling, are shown in
Table 1 for a variety of temperatures. Using both ZCT and

SCT, a large tunneling effect was predicted. At room
temperature (bold), the temperature at which the reaction
was run, we predict that approximately 40% of the rate comes
from heavy atom tunneling. This value is higher than that
predicted for many previously investigated reactions with
contributions from heavy atom tunneling.1,30

We also explored the 3 → 4 conversion (Scheme 2, bottom)
using the same methods. This reaction also involves an
intramolecular reductive coupling initiated through a (net)
hydrogen atom transfer, but given the asymmetry of the
system, we considered two possible mechanisms (Scheme 4).
Although the bottom pathway starts from a more stable radical
(by 3.5 kcal/mol due to conjugation), the ring closure step for
that radical was found to be endergonic by 17 kcal/mol (likely
due in part to the loss of conjugation) and to have a much
higher barrier (ΔG‡ = 24 kcal/mol) compared with the top
pathway (ΔG‡ = 6 kcal/mol from the higher energy radical).
For both pathways, transition structures to form alternative
diastereomers were predicted to be ∼8 kcal/mol higher in
energy than those leading to the observed diastereomer, which
is likely the result primarily of strain (see the Supporting
Information for details).
Tunneling calculations for both pathways from Scheme 3

were carried out. As shown in Table 2, the energetically
preferred pathway (via the initial alkyl radical) is again
predicted to benefit from tunneling but to a smaller extent than

Scheme 2. Cyclization Reactions Studied Herein

Scheme 3. Radical Cyclization Reaction Modeled for 1a →
2a

Figure 1. Intrinsic reaction coordinate (IRC) for the cyclization
reaction is shown in Scheme 3. Structures are visualized using
CYLView with the key bond distance shown in Å for the transition
structure.26 The vertical axis represents the potential energy
(electronic energy) relative to the energy of TS1 in kcal/mol.

Table 1. Results of Tunneling Calculations for the 1a → 2a
Reaction

fraction of rate due to tunneling

T (K) kZCT kSCT ZCT SCT

193.15 3.47 4.27 71.19% 76.58%
213.15 2.65 3.08 62.29% 67.54%
233.15 2.20 2.47 54.57% 59.5%̀
253.15 1.92 2.11 47.99% 52.55%
273.15 1.74 1.87 42.40% 46.58%
298.15 1.58 1.68 36.58% 40.31%
313.15 1.51 1.59 33.61% 37.09%
333.15 1.43 1.50 30.15% 33.32%
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does the 1a → 2a reaction (15−20% vs ∼40% contribution to
the predicted rate at room temperature). However, the
pathway via the initial conjugated radical benefits from
tunneling to a large extent (Table 3) with ∼50% contribution

to the predicted rate at room temperature. Although a slightly
longer C···C distance is found for the conjugated radical
reactant compared to the alkyl radical reactant (2.50 vs 2.44
Å), which might be expected to result in weaker tunneling
because of a wider barrier, it also has a higher activation barrier
that hinders classical over-the-barrier product formation.7

Although the pathway with a greater contribution from
tunneling is not favored in this case, both pathways benefit
significantly from tunneling.
In summary, quantum chemical computations were used to

provide evidence that radical-based C−C bond-forming

reactions featured as key steps in the total syntheses of
complex natural products can benefit greatly from heavy atom
tunneling. We hope that recognition of this observation will
encourage synthetic chemists to utilize heavy atom tunneling
as a design element in the planning of future syntheses.
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